PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Problems with the definition of renormalized Hamiltonians
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For classical lattice systems with fini(ksing) spins, we show that the implementation of momentum-space
renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space
transformations: Renormalized Hamiltonians are ill-defined in certain regions of the phase diagram.
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[. INTRODUCTION formations, at least in the case in which the spins are
bounded. The same mechanism—the existence of a phase
Despite the great success of renormalization-grdR)  transition in the system of original spins, constrained by a
ideas, both for computations and as a heuristic guide, mangarticular block-spin configuration— causes similar prob-
aspects of the theory still lack rigorous mathematical justifi-lems with the definition of renormalized Hamiltonians. For
cation. The filling of this gap is more than just of academican earlier suggestion that momentum-space maps are not all
interest. It has been repeatedly pointed @ug.[[1], p. 83,  that different from real-space maps, see 4l5g).
[[2], footnote on p. 3B [[3], p. 269) that the method is not a As we remark at the gnd of Sec. IV, these problems can
black-box type of technique: its successful application rebe interpreted as a manifestation of the well-known “large-

quires some understanding of the underlying physics or onge“.j problem.” It might. be hoped that the cqnsiderable ex-
may be led to incorrect conclusions. Studies on the found perience accumulated in the treatment of this type of prob-

tions of real-space transformatiof-8] suggest that a simi- ,%r;th(;?:é?esbf of help to control the non-Gibbsianness

lar remark applies to the underlying mathematics. Indeed,
these studies show that in various occasions renormalized
Hamiltonians are ill-defined. The finite-volume probabilities
of the renormalized system exhibit a long-range dependence We consider Ising spins;=—1,+1 on a latticex e 7°.
on boundary spins that is incompatible with the existence Of:or each finite periodic cuB(V:[—’N,N]d in 79 we define
a Hamiltonian, at least one defined in the usisaimmable
sense. Such a “pathology” is usually referred to rasn-
Gibbsianness This phenomenon, which appears after a Y e
singleapplication of the transformation, was first detected in oy ==E oxe "X, 2.1
the vicinity of first-order phase transitions, but was later dis- xeVv
cr:;)g/erd in qther regions of phase diagrams, including a_t h'gr\]/vhereIZ-izzkller -+ kgxq, and eachk; belongs to the
gnetic field§8,9] and at high temperatur¢8,10]. It fol Brilovin  zone:  By={—,—m1— L/(2N+1)]
lows that the design of the renormalization transformation is : N~ : S
crucial for the veryexistenceof a renormalization flow in a m[1=1/(2N+1)],m}. The inverse of Eq(2.1) is

IIl. MOMENTUM TRANSFORMATIONS

the Fourier-transformed variables

suitable space. 1 o
Nevertheless, the lack of similar studies for momentum- .= Y aik-x
' il = N D, Ok 2.2
space transformations left open the possibility that they keB

could be free of this pathological behavior. That is, the ques-

tion remained as to whether such transformations, possiblyy, x < \/.
with a soft cutoff, would generally lead to an actual renor- A momentum-space transformatids defined in two
malized Hamiltonian[5,11]. In this paper we present a gieps,

simple example showing that this is in genemat the case,
as already suspected by Griffiths2]. There is no essential
difference between real-space and momentum-space trans- -

(i) A cutoff is applied to the variableé?{:

ar=F(k)oy . 2.3
*Electronic address: AENTER@PHYS.RUG.NL The volume-independerutoff functionf is designed so as
"Electronic address: rf@ime.usp.br to keep only momenta smaller than a certain threskgld

1063-651X/99/565)/51657)/$15.00 PRE 59 5165 ©1999 The American Physical Society



5166 AERNOUT C. D. van ENTER AND ROBERTO FERNXDEZ PRE 59

(i) Momenta are rescaled by the factgrso as to return and the renormalized spins remdioundedin this limit.
to a Brillouin zone in[ — , 7w]% They may take a large number of values, but within some
finite interval.
(2.9 Expression(2.10 shows that a cutoff in momentum
space, even a smooth one like Eg.6), leads tononlocal
. : Y averages in real space, i.e., to functidrextending to infin-
In addition, the renormalized variableg,” are usually res- v, "This s the distinctive feature with respect to the real-
caled in applications. We will not do this, as we shall Notspace transformations analyzed, for instancegin Never-
apply the transformation more than once. theless, it is expected that “the physics behind integration
In Wilson's original approact{and references therdin gyer fluctuations having wave numbeftki|>ko] is the
[14], the cutoff functionf (k) was chosen simply as the step same as the physics behind the formation of blocks of spins

A ~V
o =f(k kO/W)O'IZ'kO/w'

function having volume[L%] in real space”[[16], Section 4.2 To
_ . ensure this, the momentum-space cutoff should lead to an
| 1 if |ki|<ky, i=1,...d almost localaverage in real space. That is, the functfon
Xieo(K) = 0 otherwise. (2.5 should decay rapidly outside of a region of size not much

larger thanL. We see that if has a Fourier transform of the
It was quickly realized, however, that such a sharp cutoffyPe (2.6), the contribution of spins outside the volume of
leads to unwanted long-range terms in the renormalize§izeL is of order In@/ky). We conclude that the cutoff func-
Hamiltonian(see, e.g.[14], p. 153, [15], Appendix J). To  tion f must approach zero in a “gradual” manner, that is,
avoid such terms one usually takes smooth momentum cutwvith A of the order ofk, in Eq. (2.6).
offs, that is, functions which go to zero in a sufficiently A soft momentum cutoif§ a functionf that is smooth and
differentiable fashion. Such functions are obtained, for in-gradual in the above sense.
stance, via a convolution

IIl. THE PHENOMENON OF NON-GIBBSIANNESS

fl= > oak=")xi,(K) (2.6
/eBY 4 Xk A state (probability measure or distributipnis called
Gibbsian if it can be written in terms of Boltzmann-Gibbs
with a smooths-like function 5, peaked ak=0 of widthA. ~ weights for an “acceptable Hamiltonidmhich] ... must

Rigorously speaking, one is interested in the lirkit satisfy the adgitionql _requireme.nt of Ioca_lity ..[that is] a
— 79 of this procedure. To make sense of this limit we returnduantity that is additive over distant lattice sitef14], p.

to real space, where the prescripti@h4) translates into the 145]. In other words, Hamiltonians must be such that the
relation energy of disjoint volumes is additive except for boundary

terms whose contribution is small in comparison with the
v Vs - . volumes. For classical lattice systems, the appropriate re-
ol'=2 fY(Lx' —y)oy, x'eVIL, (2.7 quirement is that the flipping of one spin lead tdfiaite
yeVv energy change whatever the configuration of the remaining
spins is. If the system involves spins forced to satisfy certain
conditions(local, like hard-core, or global, as in the example
below), the finite-energy-change requirement must be ad-
justed appropriately because the overall constraint may pre-
— (2.9 vent the flipping of a single spin or of isolated groups of
Ko spins. Let us be precise about this.
The Boltzmann-Gibbs weights are constructed via finite-
The volumeV is assumed to be a disjoint union of cubes ofyolume Hamiltonians which are, in general, sums of many-
sideL (i.e., N is a multiple ofL). As V—Z?, the function  pody terms: For each finite volumg in 7¢ (for instance, a
fV(x) tends to cubg, they take the form

wheref" is theV-dependentinverse discrete Fourier trans-
form of f and

™

v L Y -3,
f(X)._Wffﬂ-f(k)e dk. (29) HA(O')Z 2 (I)B(UB)! (31)
B:BNA#J

A sharp cutoff in momentum space gives rise taasum-

mable function f, i.e., =;_d f(X)|=%. [The inverse trans- Wwhere eachdy is a (A-independentfunction only of the
form of Xk, is proportional to the function spins in the finite seBCZY, i.e., of the variablesog

Hf’zlsin(koxi)/(koxi)]. Summability is restored if is smooth =10%xep FOr Ising spins, these functionds are usually

. . written in the formJgll;_goy; the general expressidd.l)
enough(for example, once differentiableln such a case, . : s
) ! o — "' is more suitable for spins larger than 1/2, where one would
expression(2.7) remains valid in the thermodynamic limit:

need powers obr;, and also for some particular spin-1/2

interactions[17]. Obviously certain summability require-

gé, = E f(|_>2' —}7)09, (2.10 ments are needed to make sense of forn(8I#), or, equiva-
ye7d lently, to ensure that the boundary terms —that is, the terms
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o |4 . s [ZA(o) is the obvious normalization factprconstructed
with the Hamiltonians(3.1), inherit the quasilocality prop-
() - () — 0 .
A A g erty (3.4):
U->Z
v v sudpa(aym) —paloyn)| — O (3.6
FIG. 1. Test for quasilocality. A% tends toZ9 while keeping K Uz

fixed the configuration insidd, the energy insidA should asymp-

. . . _ _ for all cubesA and configurationsr. We remark that this
totically become independent of the configuratipor # outsideU.

“independence from infinity” of the finite-volume probabil-

di hat i bothA di ity distributions is there regardless of whether {hdinite-
corresponding to set® that intersect bot and Its volume system exhibits long-range order or not. For in-

complement— have a small contribution compared with thestance, for the Ising model, the left-hand side of &) is

volume Of.A' . . . exactlyzero for all temperatures ondéé contains the neigh-
Let us first con5|de'r'sy§tems of spins not .‘Q’UbJeCted to angqg of A, while the long-range-order properties depend on

local or global conditioning(we are reserving the word the temperature. From a probabilistic point of view, B6)

dconztrglr;t f(\)/:/;he ﬁon_stramegl spin S]):f't.em to berllntro-_ is saying that theonditionalfinite-volume probabilities are
uced below. When the interaction is of finite range there is «j,sansitive” to what happens at infinity. The fully infinite-

nothing to impose: For each finitk, there are only a finite volume distribution need not be so
number of contributing boundary terms, all of which have [6,8-1( it is shown that for é number of real-space

Fenormalization transformations in different regions of the
phase diagram of Ising and Potts models, this quasilocality
property isviolated for the renormalized weights for some
A’ (usually very small, formed by one or two sitesnd
sug Y, |[Pgl<e, (3.2  some configuratiow’. By the above chain of implications,
Box this shows that in these instances the renormalized weights
cannot be written as Boltzmann-Gibbs weights for an
where | ®g||:=sup,|®g(o)|. From the physical point of acceptable-in Wilson's and Kogut's sense—renormalized
view, this is the condition, mentioned above, that a single flipHamiltonian. That is, while the renormalized Boltzmann-
produce a finite energy change. From the mathematical poirGibbs weights
of view, besides ensuring the summability of E§.1) for

involving terms with arbitrarily long range, the default re-
quirement is

everyo, this condition leads to a natural property amounting 1
to “independence from infinity” of the Hamiltonians. In- p,'v(a’)z—, ' E "exp[—BHA(0)] (3.7
deed, while for non-finite-range systems the dependence of Zy(a") oo

the Hamiltonian(3.1) on boundary spins—that is, arn, with
x & A— may extend to the whole of the complement/of ¢ "
condition(3.2) implies that this dependence must decay withidentities
the distance to the regiof. This property, which is called
guasilocality was central to the arguments presented in —A'H ()]t " _
[6,7]. Let us state it precisely. We take a sequence of cubes exd—ATH L ()] ,E‘f,r expl—AHA(0)] 38
UD A with larger and larger radius arftk the configuration
o inside U, in particular in the intermediate, “buffer,” re- give rise to Hamiltoniansl’ that can be written in the form
gion U\A (see Fig. 1 It is not hard to see that the summa- (3.1) for a suitable interaction thaatisfies the summability
bility condition implies(in fact, it is equivalent tpthe fol-  condition(3.2). This is the phenomenon of non-Gibbsianness
lowing fact. Let us denotery 7 the configuration referred to in the title of this section.
The symbol ‘X" in Egs. (3.7) and(3.8) is a reminder that
o5 if xeU the operation involved may not be a standard sum because
(oum)g= R (3.3  there may be uncountably many original configuratiens
7y if xeZ\U. leading to the same renormalized configuration In these
cases, the operation is rather a sum combined with a suitable
Then, limit procedure, or, in mathematical terms, an integral with
respect to the product measute_;d (1/2)2 ,,X.]. [The reader

sugH(oyn) —Hy(oyn)| — 0 (3.4  interested in the rigorous construction of E8.7) is referred
7 u—zd to the discussion iffi[8], pp. 987—99Q On the other hand,
_ _ . _ _ the notationoc— ¢’ represents the space ofiginal spins
for all configurationso and all finite regionsA. That is,  gnstrainedto produce the indicated renormalized spif.
asymptotically the_ Hamiltonian becomes independent ofy this paper we reserve the narsenstrained systerfor
what happens outside. _ such a system of original spins.
The Boltzmann-Gibbs weights The preceding discussion has to be slightly adapted for
the case of the momentum transformatiq@sl0, because
_exg —BH,(0)] 3.5 they lead to spin configurations subjected to the global con-
pal0)= Zy(0) ' dition of being images of Eq2.10. For the sake of brevity,

are always well defined, it isiot true that the family of
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let us callprofilesthese image —or renormalized— configu- mapped onto non-Gibbsian staf€8], Theorem 4. A very

rations. They have spin values simple example of this phenomenon for 1 by 2 blocks was
presented i118]. We shall now prove a similar result for a
_ < gl < v momentum transformation of the type introduced above.
);EEZd fyl=oy ;EEZd fl. 3.9 Let us first sketch some intuition behind our argument. In

real space, the momentum transformati@il0Q looks ap-
and they form a space with a rather cumbersome structurgyroximately like an average. Expressions of this type have
For instance, it is in general impossible to find different pro-peen studied, for example, [19,20 (see alsd[15] Appen-
files takingexactlythe same values on(&inite or infinite) set  dix 2] for a stochastic version Even when Eq(2.10 in-

U. The notion of quasilocality, Eq(3.4) or (3.6), loses, qes a sum over all spinsof the lattice, one would expect

therefore, its original meaning. Rather, the “independenc v . . .
from infinity” should be understood as the followirapnti- That eachy,, is essentially determined only by the sping

nuity property: Given any8>0 one has that foU’CZd inside the block of sidd. centered a.IL)—(),. Therefore, the

large enough and>0 small enough mechanism causing non-Gibbsianness for average transfor-
mations[[8] Section 4.3.5should apply to the present case
|g)’z, — w)’z,| <8x' eU /:>|p’A,(gf)_p’A,(w/)|g£_ with minor adaptations.
(3.10 We will take for our example the identity in one direction

and in the other direction the soft cutoff function:
This property is satisfied, for instance, if the renormalized
Hamiltonian on the profiles is of the for(3.1) for an inter- . cog(k) for |k|<m/2,
action that is summable in the sen&e?2). The purpose of o
this paper is to show that there exists one momentum trans-

formation such that, at least at low temperatures, the renor- Thjs function integrates out half of the momenta degrees

malized system lacks proper($.10, and hence there is N0 of freedom in this direction, which corresponds to taking a

renormalized Hamiltonian defined in the usual sense. Wenot strictly loca) average over blocks of size 1 by 2, cen-

shall determine, in Sec. I\one particular profileo’ (equal  tered at sites with even coordinates in the direction in which

to “all-0” ) for which Eq.(3.10 is violated for a particular \ye renormalize.

A’ (formed by two consecutive siteOf course, it is natural lts Fourier transform is easily computable. Indeé&D)

to wonder how relevant the phenomenon is from the physical 1 f(2)=f(—2)=4%, and for all othem

point of view, given that the discontinuity involves few and

atypical configurationsr’. We shall comment on this point 2

in Sec. V. f(n)=——sin
The lack of continuity(3.10 [or quasilocality(3.6)] can

be interpreted as exhibiting some sort of “action at a dis—[|n particularf(n) =0 for all evenn+0,+2 ]

tance™ Infinitely far away spin-flips produce a sizeable = The nitial (and crucial part of the argument consists in
change close to the origieyen when the intermediate renor- exhibiting a transformed configuratian’ such that the cor-

malized spins are (almost) frozefhis is in contrast with the  regponding constrained system of original spins has a phase
usual behavior in equilibrium statistical mechani@bbsian  yansitionat zero temperatureThe configuration in question
behavioj where changes at infinity can propagate only,

through fluctuations of intermediate spins. It is not hard t0'S ‘,"izO for all xe 72 The gorrespondlng qnglnal configu-
imagine the explanation: A fixed renormalized configurationt@ions must, therefore, satisfy the constraint

still allows fluctuations in the corresponding constrained sys-

tem of original spins. These fluctuations act as “hidden de- > f()wops =0 (4.4)
grees of freedom” that in some instances can bring informa- [

tion from infinity. This happens when the constrained system

of original spins develops long-range correlations, i.e., wherior eachnin the direction under consideration. We claim that
it undergoes ghase transition The argument of the next the only four ground states are the 4-periodic configuration
section consists precisely in showing that for the chosen exstrip state

ample such a phase transition does take place.

. 4.2
otherwise. 4.2

v

“h—2nin+2)’

++——++——++ (4.5
IV. NON-GIBBSIANNESS DUE TO MOMENTUM . . -
TRANSEFORMATIONS a_nd its translates over distances 1,.2, a_iwﬁne in th other
direction they are of course translation invarjatitis imme-

We consider the nearest-neighbor ferromagnetic Isingliate to check that these configurations are compatible with
model in£="72, the constraint. Moreover, it is not difficult to check that un-
der the constraint4.4) they are ground states.

Indeed, to lower the energy of the configurations one
needs a larger number of consecutive aligned spins. But we
claim that if there were a row of three identical spins, say
at low temperatures, that is, large It has been shown that plus, next to each other, then constraift4) could not be
the low-temperature states for this model undeflazal) satisfied. The idea is that the contribution of these three spins
block-average transformation with even block sizes arecannot possibly be compensated by the remaining spins so as

H=—2 oxoy+h> oy, (4.2)
() y
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to make the suni.4) equal to zero. If the middle plus would tion (2.10 of all configurations coinciding witlr* inside
be on an even site, say at zero, this happens because M’. These profiles have two important properties.
(i) As M’ grows, the profiles become arbitrarily close to

[£(1)|<min{f(0)+f(1)+f(—1) o TinsideU’.
=3 (i) Given any fixedA'’, if U'DA' is large enough, then
+w,f(2)+w_of(—2)iwy,w_,=%1} for M'DU’ large enough all the constrained configurations

for profiles ofOJf‘M, coincide with the initially selected

=f(1)+f(—1) ( - (4.6) striped configuration insidd.’. This is checked through the
3Xa)’ same inequalities proving the uniqueness of the original con-

as a simple calculation shows. If, on the other hand, thdiguration for the profilec * These inequalities are sharp,
middle plus would be on an odd site, the interval of threehence they are insensitive to the effect of far away spins.
plus spins would need to have a minus spin both to its left (3) “Unfixing” of the spins close to the originAlter the
and to its right, otherwise we would have the situation justprevious seO(JT’M, by allowing arbitrary values otr;», for
shown to be impossible. In this case, we see that the CO , 5 sepr 7 formed by the origin and one of its neighbors.
straint(4.4), centered at either the left or the rightmost plusy, . reshonds to allowing fluctuations of these renormal-
site, cannot be fulfilled because, once more, the “tail” can-, . . . ¥ . .

not compensate the central five spins. For instance, assumir'\%l)ed spins. This leads to a final S@}‘\/,}J',M/ of profiles. Itis
the origin is the rightmost plus of the block, this follows clear, but boring to justify mathematically, that the probabil-

from the fact that ity distribution for the spins af\’ will favor the configura-
tion corresponding to the selected strip configurati@ee
; _ _ the discussion ifi[8] Section 4.2.)
< + +
||é3 [F(DI<min{f(0)=f(1) +T(= 1)+ 0,f(2) The upshot of this argument is therefore the following.

Let O}, andO}; . \,, be the families of profiles ob-
tained by the above procedure for two different strip configu-
4.7 rations(4.5). Then the preceding argument shows that there

. . exists ac>0 such that
We conclude that the constrained system has multiple,

namely four, ground states.

+f(—2)iw_p,=*11=f(0) (=1).

o' €0y, yr w0 €07 4w =lpy (0 —py (0')]=c

The remaining part of the argument follows closely the 4.8
presentation ifi[8] Section 4.3.% There are three additional ’
steps. for all large enougi' DA’ for M’ DU’ sufficiently large.

(1) Existence of a phase transition at nonzero temperaturerhjs proves that a violation of Eq3.10 is obtained when
for the constrained systerfihis follows from a well-known  the profile insideU’ is close to the “all-0” configuration.
theory (Pirogov-Sinai theory[21], Chap. 3, [[8], AppendiX  The fact that we have introduced anotherldétis a conces-
BJ; note that as remarked [22], the theory also applies to  sjon to mathematical rigor: In this way the violation involves
systems with constraintsThere is one extremal phase asso-gpensets of configurations and this ensures that the phenom-
ciated to each of the four ground staté®epending onf,  enon isessentialin probabilistic terms, that is, it cannot be
these constrained phases may involve only a small number @fyoided by redefining probability weights in sets of measure
configurationg zero(open sets have nonzero renormalized measure because
(2) Selection of the phases of the constrained system vigg do the initial measures, and smooth momentum transfor-
block-spin boundary condition$his requires the choice of a mation are continuolls
profile o *such that if it is imposed in a sufficiently large  We see that the argument is insensitive to the presence of
(but finite) volume, the constrained configurations deep in-a magnetic fieldbecause the constrained system is asked to
side this volume have to be close to the prescribed grountdave small magnetizatiopn thus we are proving non-
state. This is straightforward, though a little cumbersome tdaGibbsianness for low temperatures karbitrary magnetic
write. The procedure is as follows: For a givéarge region field.
U’, pick first a configurations* such that(a) inside U’
coincides with the strip configuratio@.5) corresponding to V. COMMENTS AND CONCLUSIONS
the phase to be selected, afty) outsideU’, is identical
equal to+ 1. The corresponding profile is our *. A calcu-
lation involving simple inequalities very much like Edq4.6)
and (4.7) shows thato™ is the only original configuration

The present example of non-Gibbsianness as a conse-
quence of momentum-space transformations confirms the
suspicion of Griffithg(12] that “no peculiarities of this sort

- L . . have been fouth. . . ,which may merely reflect the fact that
yielding the prof_|leo- g It was to ensure this uniqueness thatno one has looked for them!” Nevertheless, one should not
the “all-+" configuration was chosen for the exteriorof = .5, 104 radical conclusions from this occurrence. On the
(Ie;s extreme conflguratlf?ns”woulq haye destroyed th'ff)ractical side, the main implication of non-Gibbsianness is
uniqueness; of course the ait-” configuration WOUI.d havg that one has to be very careful in designing renormalization
worked equally well. It is now easy to see that this profile o,y transformations. This is in complete agreement with
o "does the job it was designed for. Indeed, for each sefyhat the founders and various practitioners of
M’DU’ let us consider the famil;DJyM, formed by all the  renormalization-group methods have been saying all along.
profiles obtained by performing the momentum transforma- Indeed, already Wilson and Kogut in their classic review
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emphasized “Otherwisdthat is, nonperturbativelythe lo-  flows of parameters in spaces where the various parts of the
cality of [the renormalized interactiohss a nontrivial prob- phase diagram can be connected, at least in a neighborhood
lem, which will not be discussed furthef{14], p. 145. And  of the critical point. In this regard, the approach based on
more explicitly, Fisher in his “Renormalization Group De- low-temperature contour variables provides at best a partial
siderata” listed the conditions needed for a successful renomnswer to the problem of rigorously justifying
malization scheme in Hamiltonian space: “A renormaliza-renormalization-group calculations.
tion group for a space of Hamiltonians should satisfy the The second feature of our example is that the violation of
following: (A) Existencein the thermodynamic limjt. .. ,  continuity was detected for a renormalized configuration that
(C) Spatial locality . . . , oneshould be able to identify the is rather atypicalfor instance, it will never be generated in
same regions of space and associated local variables befaaay reasonable numerical simulation schgri@is seems to
and after the transformationf[1], Section 5.4.2 be a systematic feature of most examples, and prompted Do-
Our example adds to the numerous instances showing thatushin to propose the study of these measures with tech-
perversely or sloppily designed transformations can leadhiques borrowed from the treatment of other known systems
people into trouble. As Goldenfeld points out in his bookwhere it is necessary to exclude sets of “bad” configura-
Lectures on Phase Transitions and the Renormalizatiorions, namely unbounded spin systems and systems exhibit-
Group [[3], p- 268, “It is dangerous to proceed without ing Griffiths singularities. This has given rise to a healthy
thinking about the physics.” The moral is, then, that renor-body of work[25-34. As an upshot, a more general theory
malization transformations must be carefully crafted andnvolving a wider class of allowable Hamiltonians has been
case-tailored. Already Wilson, as quoted[[23], p. 4923, proposed. This theory leads to the notion of “weak Gibb-
warned “One cannot write a renormalization cookbook.” sianness” which seems a promising framework for a unified
On the foundational side, examples like the present on&reatment. See, for instande5] for a review of results in
confirm the view expressed by Benfatto and Galla@tin  this and related directions.
the opening sentence of their boBenormalisation Group We think our result illustrates and clarifies to some extent
“The notion of Renormalisation Group is not well-defined.” the reason why finding a good renormalization-group scheme
It is clear that the mathematical formalization of the methodis such a nontrivial task, not only for strictly local but also
requires much more than a naive approach in terms ofor only approximately local transformations. We produced
Hamiltonians and flows of coupling constants. In fact, thean example in the low-temperature regime, but the fact that
example of this paper illustrates some features pointing intdhe mechanisms of non-Gibbsianness are so similar for real-
promising directions for a better mathematical understandingpace and momentum-space transformations leads us to the
of the renormalization-group framework. conjecture that, as in real space, also in momentum-space
First, our problematic profiles were configurations with one cannot trust that in general the critical region is free of
small magnetization. At low temperatures, this correspondproblems.
to a large fluctuation from the typical behavior, in which the
magnetization in a region of width is either positive or
negative of orde©(L%). Renormalized effective interactions
are known not to be adequate to describe such large values of We thank various colleagues and, in particular, Michael
the fluctuation field[20]; geometric expansions are much Fisher, for pointing out to us that our earlier results applied
more suitable. This suggests to combine renormalizationto position-space transformations only, and that the question
group ideas with this type of expansion—cluster or polymerof whether momentum-space transformations behaved in a
expansion—to circumvent the ill-definedness of the renorsimilar manner deserved consideration. Our treatment owes
malized Hamiltonian. These expansions have indeed beemuch to our earlier collaboration with Alan Sokal. R.F.
successfully applied in the rigorous control of thanks the Rijksuniversiteit Groningen for hospitality while
renormalization-group transformations of unbounded-spirthis work was performed, and the FOM-SWON Samenwerk-
systems[[19,20, and references therdinA related ap- ingsverband Mathematische Fysica for supporting his visits.
proach, for bounded-spin systems, resorted to the renormalhe work of R.F. was partially supported by FAPE&ant
ization of Peierls-like contourg24. No. 95/0790-1, Projeto Tertiao “Fenomenos Citicos e
This observation supports the idea that spin variables mafrocessos Evolutivos e Sistemas em Ehtii’), CNPq
be the “wrong” variables and that the appropriate variables(Grant No. 301625/95)6and FINEP(Nucleo de Excelacia
in the presence of first-order transitions are nonlocal vari¢'Fenomenos Citicos em Probabilidade e Processos Estoca
ables such as contours. It should be pointed out, howeveticos,” PRONEX-177/9¢, and by the Consejo Nacional de
that the use of contours requires the consideration of differinvestigaciones Cietficas y Tenias(CONICET) of Argen-
ent (contouy ensembles for separate phases. This would gdina. The work of A.C.D.v.E. was supported by EU Contract
against the usual renormalization-group description based ddo. CHRX-CT93-0411.
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