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Problems with the definition of renormalized Hamiltonians
for momentum-space renormalization transformations
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For classical lattice systems with finite~Ising! spins, we show that the implementation of momentum-space
renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space
transformations: Renormalized Hamiltonians are ill-defined in certain regions of the phase diagram.
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I. INTRODUCTION

Despite the great success of renormalization-group~RG!
ideas, both for computations and as a heuristic guide, m
aspects of the theory still lack rigorous mathematical jus
cation. The filling of this gap is more than just of academ
interest. It has been repeatedly pointed out~e.g. @@1#, p. 82#,
@@2#, footnote on p. 38#, @@3#, p. 268#! that the method is not a
black-box type of technique; its successful application
quires some understanding of the underlying physics or
may be led to incorrect conclusions. Studies on the foun
tions of real-space transformations@4–8# suggest that a simi
lar remark applies to the underlying mathematics. Inde
these studies show that in various occasions renormal
Hamiltonians are ill-defined. The finite-volume probabiliti
of the renormalized system exhibit a long-range depende
on boundary spins that is incompatible with the existence
a Hamiltonian, at least one defined in the usual~summable!
sense. Such a ‘‘pathology’’ is usually referred to asnon-
Gibbsianness. This phenomenon, which appears after
singleapplication of the transformation, was first detected
the vicinity of first-order phase transitions, but was later d
coverd in other regions of phase diagrams, including at h
magnetic fields@8,9# and at high temperatures@9,10#. It fol-
lows that the design of the renormalization transformation
crucial for the veryexistenceof a renormalization flow in a
suitable space.

Nevertheless, the lack of similar studies for momentu
space transformations left open the possibility that th
could be free of this pathological behavior. That is, the qu
tion remained as to whether such transformations, poss
with a soft cutoff, would generally lead to an actual reno
malized Hamiltonian@5,11#. In this paper we present
simple example showing that this is in generalnot the case,
as already suspected by Griffiths@12#. There is no essentia
difference between real-space and momentum-space t
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formations, at least in the case in which the spins
bounded. The same mechanism—the existence of a p
transition in the system of original spins, constrained by
particular block-spin configuration— causes similar pro
lems with the definition of renormalized Hamiltonians. F
an earlier suggestion that momentum-space maps are no
that different from real-space maps, see also@13#.

As we remark at the end of Sec. IV, these problems
be interpreted as a manifestation of the well-known ‘‘larg
field problem.’’ It might be hoped that the considerable e
perience accumulated in the treatment of this type of pr
lem could be of help to control the non-Gibbsianne
‘‘pathologies.’’

II. MOMENTUM TRANSFORMATIONS

We consider Ising spinssxW521,11 on a lattice,xWPZd.
For each finite periodic cubeV5@2N,N#d in Zd we define
the Fourier-transformed variables

ŝkW
V
ª(

xWPV

sxWe
2 ikW•xW, ~2.1!

where kW•xWªk1x11•••1kdxd , and eachki belongs to the
Brillouin zone: BN5$2p,2p@121/(2N11)#, . . . ,
p@121/(2N11)#,p%. The inverse of Eq.~2.1! is

sxW5
1

~2N11!d (
kWPB N

d
ŝkW

V
eikW•xW ~2.2!

for xWPV.
A momentum-space transformationis defined in two

steps.
~i! A cutoff is applied to the variablesŝkW

V :

ŝkW
8V
ª f̂ ~kW !ŝkW

V . ~2.3!

The volume-independentcutoff function f̂ is designed so as
to keep only momenta smaller than a certain thresholdk0.
5165 ©1999 The American Physical Society
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5166 PRE 59AERNOUT C. D. van ENTER AND ROBERTO FERNA´ NDEZ
~ii ! Momenta are rescaled by the factork0 so as to return
to a Brillouin zone in@2p,p#d:

ŝkW8
8V
ª f̂ ~kW8k0 /p!ŝkW8k0 /p

V . ~2.4!

In addition, the renormalized variablesŝkW8
8V are usually res-

caled in applications. We will not do this, as we shall n
apply the transformation more than once.

In Wilson’s original approach@and references therein#

@14#, the cutoff functionf̂ (kW ) was chosen simply as the ste
function

xk0
~kW !ªH 1 if uki u<k0 , i 51, . . . ,d

0 otherwise.
~2.5!

It was quickly realized, however, that such a sharp cu
leads to unwanted long-range terms in the renormali
Hamiltonian~see, e.g.,@14#, p. 153#, @15#, Appendix 2#!. To
avoid such terms one usually takes smooth momentum
offs, that is, functionsf̂ which go to zero in a sufficiently
differentiable fashion. Such functions are obtained, for
stance, via a convolution

f̂ ~kW !5 (
lW PB N

d
dD~kW2lW !xk0

~kW ! ~2.6!

with a smoothd-like functiondD peaked atk50 of width D.
Rigorously speaking, one is interested in the limitV

→Zd of this procedure. To make sense of this limit we retu
to real space, where the prescription~2.4! translates into the
relation

sxW8
8V

5 (
yWPV

f V~LxW82yW !syW , xW8PV/L, ~2.7!

wheref V is theV-dependent~inverse! discrete Fourier trans
form of f̂ and

Lª
p

k0
. ~2.8!

The volumeV is assumed to be a disjoint union of cubes
side L ~i.e., N is a multiple ofL). As V→Zd, the function
f V(xW ) tends to

f ~xW !ª
1

~2p!dE
2p

p

f̂ ~kW !e2 ikW•xWdkW . ~2.9!

A sharp cutoff in momentum space gives rise to anonsum-

mable function f, i.e., (xWPZdu f (xW )u5`. @The inverse trans-
form of xk0

is proportional to the function

) i 51
d sin(k0xi)/(k0xi)]. Summability is restored iff̂ is smooth

enough~for example, once differentiable!. In such a case
expression~2.7! remains valid in the thermodynamic limit:

sxW8
8 5 (

yWPZd
f ~LxW82yW !syW , ~2.10!
t

ff
d

t-

-

f

and the renormalized spins remainboundedin this limit.
They may take a large number of values, but within so
finite interval.

Expression ~2.10! shows that a cutoff in momentum
space, even a smooth one like Eq.~2.6!, leads tononlocal
averages in real space, i.e., to functionsf extending to infin-
ity. This is the distinctive feature with respect to the re
space transformations analyzed, for instance, in@8#. Never-
theless, it is expected that ‘‘the physics behind integrat
over fluctuations having wave numbers@ uki u.k0# is the
same as the physics behind the formation of blocks of sp
having volume@Ld# in real space’’@@16#, Section 4.2#. To
ensure this, the momentum-space cutoff should lead to
almost localaverage in real space. That is, the functionf
should decay rapidly outside of a region of size not mu
larger thanL. We see that iff has a Fourier transform of th
type ~2.6!, the contribution of spins outside the volume
sizeL is of order ln(D/k0). We conclude that the cutoff func
tion f̂ must approach zero in a ‘‘gradual’’ manner, that
with D of the order ofk0 in Eq. ~2.6!.

A soft momentum cutoffis a functionf̂ that is smooth and
gradual in the above sense.

III. THE PHENOMENON OF NON-GIBBSIANNESS

A state ~probability measure or distribution! is called
Gibbsian if it can be written in terms of Boltzmann-Gibb
weights for an ‘‘acceptable Hamiltonian@which# . . . must
satisfy the additional requirement of locality . . .@that is,# a
quantity that is additive over distant lattice sites’’@@14#, p.
145#. In other words, Hamiltonians must be such that t
energy of disjoint volumes is additive except for bounda
terms whose contribution is small in comparison with t
volumes. For classical lattice systems, the appropriate
quirement is that the flipping of one spin lead to afinite
energy change whatever the configuration of the remain
spins is. If the system involves spins forced to satisfy cert
conditions~local, like hard-core, or global, as in the examp
below!, the finite-energy-change requirement must be
justed appropriately because the overall constraint may
vent the flipping of a single spin or of isolated groups
spins. Let us be precise about this.

The Boltzmann-Gibbs weights are constructed via fini
volume Hamiltonians which are, in general, sums of ma
body terms: For each finite volumeL in Zd ~for instance, a
cube!, they take the form

HL~s!5 (
B:BùLÞB

FB~sB!, ~3.1!

where eachFB is a (L-independent! function only of the
spins in the finite setB,Zd, i.e., of the variablessB
5$sxW%xWPB . For Ising spins, these functionsFB are usually
written in the formJB)xWPBsxW ; the general expression~3.1!
is more suitable for spins larger than 1/2, where one wo
need powers ofsxW , and also for some particular spin-1/
interactions @17#. Obviously certain summability require
ments are needed to make sense of formula~3.1!, or, equiva-
lently, to ensure that the boundary terms —that is, the te
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corresponding to setsB that intersect bothL and its
complement— have a small contribution compared with
volume ofL.

Let us first consider systems of spins not subjected to
local or global conditioning~we are reserving the word
‘‘constraint’’ for the ‘‘constrained spin system’’ to be intro
duced below!. When the interaction is of finite range there
nothing to impose: For each finiteL, there are only a finite
number of contributing boundary terms, all of which ha
diameter smaller than the range. For more general syst
involving terms with arbitrarily long range, the default r
quirement is

supxW (
B{xW

iFBi,`, ~3.2!

where iFBiªsupsuFB(sB)u. From the physical point of
view, this is the condition, mentioned above, that a single
produce a finite energy change. From the mathematical p
of view, besides ensuring the summability of Eq.~3.1! for
everys, this condition leads to a natural property amounti
to ‘‘independence from infinity’’ of the Hamiltonians. In
deed, while for non-finite-range systems the dependenc
the Hamiltonian~3.1! on boundary spins—that is, onsx with
x¹L— may extend to the whole of the complement ofL,
condition~3.2! implies that this dependence must decay w
the distance to the regionL. This property, which is called
quasilocality, was central to the arguments presented
@6,7#. Let us state it precisely. We take a sequence of cu
U.L with larger and larger radius andfix the configuration
s inside U, in particular in the intermediate, ‘‘buffer,’’ re-
gion U\L ~see Fig. 1!. It is not hard to see that the summ
bility condition implies~in fact, it is equivalent to! the fol-
lowing fact. Let us denotesUh the configuration

~sUh!xW5H sxW if xWPU

hxW if xWPZd\U.
~3.3!

Then,

sup
hĥ

uHL~sUh!2HL~sUĥ !u →
U→Zd

0 ~3.4!

for all configurationss and all finite regionsL. That is,
asymptotically the Hamiltonian becomes independent
what happens outsideU.

The Boltzmann-Gibbs weights

rL~s!ª
exp@2bHL~s!#

ZL~s!
~3.5!

FIG. 1. Test for quasilocality. AsU tends toZd while keeping
fixed the configuration insideU, the energy insideL should asymp-

totically become independent of the configurationh or ĥ outsideU.
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@ZL(s) is the obvious normalization factor#, constructed
with the Hamiltonians~3.1!, inherit the quasilocality prop-
erty ~3.4!:

sup
hĥ

urL~sUh!2rL~sUĥ !u →
U→Zd

0 ~3.6!

for all cubesL and configurationss. We remark that this
‘‘independence from infinity’’ of the finite-volume probabil
ity distributions is there regardless of whether the~infinite-
volume! system exhibits long-range order or not. For i
stance, for the Ising model, the left-hand side of Eq.~3.6! is
exactlyzero for all temperatures onceU contains the neigh-
bors ofL, while the long-range-order properties depend
the temperature. From a probabilistic point of view, Eq.~3.6!
is saying that theconditionalfinite-volume probabilities are
‘‘insensitive’’ to what happens at infinity. The fully infinite
volume distribution need not be so.

In @6,8–10# it is shown that for a number of real-spac
renormalization transformations in different regions of t
phase diagram of Ising and Potts models, this quasiloca
property isviolated for the renormalized weights for som
L8 ~usually very small, formed by one or two sites!, and
some configurations8. By the above chain of implications
this shows that in these instances the renormalized wei
cannot be written as Boltzmann-Gibbs weights for
acceptable—in Wilson’s and Kogut’s sense—renormalize
Hamiltonian. That is, while the renormalized Boltzman
Gibbs weights

rL8
8 ~s8!5

1

ZL8~s8!
‘ ‘ (

s→s8
’ ’exp@2bHL~s!# ~3.7!

are always well defined, it isnot true that the family of
identities

exp@2b8HL8
8 ~s8!#ª ‘ ‘ (

s→s8
’ ’exp@2bHL~s!# ~3.8!

give rise to HamiltoniansH8 that can be written in the form
~3.1! for a suitable interaction thatsatisfies the summability
condition~3.2!. This is the phenomenon of non-Gibbsianne
referred to in the title of this section.

The symbol ‘‘( ’’ in Eqs. ~3.7! and~3.8! is a reminder that
the operation involved may not be a standard sum beca
there may be uncountably many original configurationss
leading to the same renormalized configurations8. In these
cases, the operation is rather a sum combined with a suit
limit procedure, or, in mathematical terms, an integral w
respect to the product measure)xWPZd@(1/2)(hxW

#. @The reader
interested in the rigorous construction of Eq.~3.7! is referred
to the discussion in@@8#, pp. 987–990#. On the other hand
the notations→s8 represents the space oforiginal spins
constrainedto produce the indicated renormalized spins8.
In this paper we reserve the nameconstrained systemfor
such a system of original spins.

The preceding discussion has to be slightly adapted
the case of the momentum transformations~2.10!, because
they lead to spin configurations subjected to the global c
dition of being images of Eq.~2.10!. For the sake of brevity,



u-

u
ro

c

e

an
no
o
W

l
ic
d
t

is
le
r-

ly
t

ion
ys
de

a
em
e

t
e

in

t

ar

as
a

In

ve

t

sfor-
e

n

es
a

n-
ich

n

ase

-

at
ion

ith
n-

ne
we

ay

pins
o as

5168 PRE 59AERNOUT C. D. van ENTER AND ROBERTO FERNA´ NDEZ
let us callprofilesthese image —or renormalized— config
rations. They have spin values

2 (
yWPZd

u f ~yW !u<sxW8
8 < (

yWPZd
u f ~yW !u, ~3.9!

and they form a space with a rather cumbersome struct
For instance, it is in general impossible to find different p
files takingexactlythe same values on a~finite or infinite! set
U. The notion of quasilocality, Eq.~3.4! or ~3.6!, loses,
therefore, its original meaning. Rather, the ‘‘independen
from infinity’’ should be understood as the followingconti-
nuity property: Given any«.0 one has that forU8,Zd

large enough andd.0 small enough

usxW8
8 2vxW8

8 u,d,xW8PU8⇒urL8
8 ~s8!2rL8

8 ~v8!u<«.
~3.10!

This property is satisfied, for instance, if the renormaliz
Hamiltonian on the profiles is of the form~3.1! for an inter-
action that is summable in the sense~3.2!. The purpose of
this paper is to show that there exists one momentum tr
formation such that, at least at low temperatures, the re
malized system lacks property~3.10!, and hence there is n
renormalized Hamiltonian defined in the usual sense.
shall determine, in Sec. IV,oneparticular profiles8 ~equal
to ‘‘all-0’’ ! for which Eq. ~3.10! is violated for a particular
L8 ~formed by two consecutive sites!. Of course, it is natura
to wonder how relevant the phenomenon is from the phys
point of view, given that the discontinuity involves few an
atypical configurationss8. We shall comment on this poin
in Sec. V.

The lack of continuity~3.10! @or quasilocality~3.6!# can
be interpreted as exhibiting some sort of ‘‘action at a d
tance’’: Infinitely far away spin-flips produce a sizeab
change close to the origin,even when the intermediate reno
malized spins are (almost) frozen. This is in contrast with the
usual behavior in equilibrium statistical mechanics~Gibbsian
behavior! where changes at infinity can propagate on
through fluctuations of intermediate spins. It is not hard
imagine the explanation: A fixed renormalized configurat
still allows fluctuations in the corresponding constrained s
tem of original spins. These fluctuations act as ‘‘hidden
grees of freedom’’ that in some instances can bring inform
tion from infinity. This happens when the constrained syst
of original spins develops long-range correlations, i.e., wh
it undergoes aphase transition. The argument of the nex
section consists precisely in showing that for the chosen
ample such a phase transition does take place.

IV. NON-GIBBSIANNESS DUE TO MOMENTUM
TRANSFORMATIONS

We consider the nearest-neighbor ferromagnetic Is
model inL5Z2,

H52 (
^xW ,yW &

sxWsyW1h(
yW

syW , ~4.1!

at low temperatures, that is, largeb. It has been shown tha
the low-temperature states for this model under a~local!
block-average transformation with even block sizes
re.
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mapped onto non-Gibbsian states@@8#, Theorem 4.6#. A very
simple example of this phenomenon for 1 by 2 blocks w
presented in@18#. We shall now prove a similar result for
momentum transformation of the type introduced above.

Let us first sketch some intuition behind our argument.
real space, the momentum transformation~2.10! looks ap-
proximately like an average. Expressions of this type ha
been studied, for example, in@19,20# ~see also@@15# Appen-
dix 2# for a stochastic version!. Even when Eq.~2.10! in-
volves a sum over all spinsyW of the lattice, one would expec
that eachsxW8

8 is essentially determined only by the spinssyW

inside the block of sideL centered atLxW8. Therefore, the
mechanism causing non-Gibbsianness for average tran
mations@@8# Section 4.3.5# should apply to the present cas
with minor adaptations.

We will take for our example the identity in one directio
and in the other direction the soft cutoff function:

f̂ ~k!5H cos2~k! for uku<p/2,

0 otherwise.
~4.2!

This function integrates out half of the momenta degre
of freedom in this direction, which corresponds to taking
~not strictly local! average over blocks of size 1 by 2, ce
tered at sites with even coordinates in the direction in wh
we renormalize.

Its Fourier transform is easily computable. Indeed,f (0)
5 1

4 , f (2)5 f (22)5 1
8 , and for all othern

f ~n!52
2

p
sinS n

p

2 D3
1

~n22!n~n12!
. ~4.3!

@In particular f (n)50 for all evennÞ0,62.#
The initial ~and crucial! part of the argument consists i

exhibiting a transformed configurationv8 such that the cor-
responding constrained system of original spins has a ph
transitionat zero temperature. The configuration in question
is vxW

850 for all xWPZ2. The corresponding original configu
rations must, therefore, satisfy the constraint

(
l

f ~ l !v2n1 l50 ~4.4!

for eachn in the direction under consideration. We claim th
the only four ground states are the 4-periodic configurat
~strip state!

1122112211 ~4.5!

and its translates over distances 1, 2, or 3~while in the other
direction they are of course translation invariant!. It is imme-
diate to check that these configurations are compatible w
the constraint. Moreover, it is not difficult to check that u
der the constraint~4.4! they are ground states.

Indeed, to lower the energy of the configurations o
needs a larger number of consecutive aligned spins. But
claim that if there were a row of three identical spins, s
plus, next to each other, then constraint~4.4! could not be
satisfied. The idea is that the contribution of these three s
cannot possibly be compensated by the remaining spins s
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to make the sum~4.4! equal to zero. If the middle plus woul
be on an even site, say at zero, this happens because

(
u l u>3

u f ~ l !u,min$ f ~0!1 f ~1!1 f ~21!

1v2f ~2!1v22f ~22!:v2 ,v22561%

5 f ~1!1 f ~21! S 5
4

33p D , ~4.6!

as a simple calculation shows. If, on the other hand,
middle plus would be on an odd site, the interval of thr
plus spins would need to have a minus spin both to its
and to its right, otherwise we would have the situation j
shown to be impossible. In this case, we see that the c
straint ~4.4!, centered at either the left or the rightmost pl
site, cannot be fulfilled because, once more, the ‘‘tail’’ ca
not compensate the central five spins. For instance, assu
the origin is the rightmost plus of the block, this follow
from the fact that

(
u l u>3

u f ~ l !u,min$ f ~0!2 f ~1!1 f ~21!1v2f ~2!

1 f ~22!:v22561%5 f ~0! ~5 1
4 !.

~4.7!

We conclude that the constrained system has multi
namely four, ground states.

The remaining part of the argument follows closely t
presentation in@@8# Section 4.3.5#. There are three additiona
steps.

~1! Existence of a phase transition at nonzero temperat
for the constrained system.This follows from a well-known
theory~Pirogov-Sinai theory@@21#, Chap. 2#, @@8#, Appendix
B#; note that as remarked in@22#, the theory also applies to
systems with constraints!. There is one extremal phase ass
ciated to each of the four ground states.~Depending onf,
these constrained phases may involve only a small numbe
configurations!.

~2! Selection of the phases of the constrained system
block-spin boundary conditions.This requires the choice of
profile s81such that if it is imposed in a sufficiently larg
~but finite! volume, the constrained configurations deep
side this volume have to be close to the prescribed gro
state. This is straightforward, though a little cumbersome
write. The procedure is as follows: For a given~large! region
U8, pick first a configurations1 such that~a! inside U8
coincides with the strip configuration~4.5! corresponding to
the phase to be selected, and~b! outside U8, is identical
equal to11. The corresponding profile is ours81. A calcu-
lation involving simple inequalities very much like Eqs.~4.6!
and ~4.7! shows thats1 is the only original configuration
yielding the profiles81. It was to ensure this uniqueness th
the ‘‘all-1 ’’ configuration was chosen for the exterior ofU8
~less extreme configurations would have destroyed
uniqueness; of course the ‘‘all-2 ’’ configuration would have
worked equally well!. It is now easy to see that this profil
s81 does the job it was designed for. Indeed, for each
M 8.U8 let us consider the familyOU8,M8

81 formed by all the
profiles obtained by performing the momentum transform
e
e
ft
t
n-

-
ing

e,

e
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of
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tion ~2.10! of all configurations coinciding withs1 inside
M 8. These profiles have two important properties.

~i! As M 8 grows, the profiles become arbitrarily close
s81insideU8.

~ii ! Given any fixedL8, if U8.L8 is large enough, then
for M 8.U8 large enough all the constrained configuratio
for profiles of OU8,M8

81 coincide with the initially selected
striped configuration insideL8. This is checked through the
same inequalities proving the uniqueness of the original c
figuration for the profiles81. These inequalities are shar
hence they are insensitive to the effect of far away spins

~3! ‘‘Unfixing’’ of the spins close to the origin.Alter the
previous setOU8,M8

81 by allowing arbitrary values ofsxW8
8 for

xW8 on a setL8 formed by the origin and one of its neighbor
This corresponds to allowing fluctuations of these renorm
ized spins. This leads to a final setOL8,U8,M8

81 of profiles. It is
clear, but boring to justify mathematically, that the probab
ity distribution for the spins atL8 will favor the configura-
tion corresponding to the selected strip configuration.~See
the discussion in@@8# Section 4.2#.!

The upshot of this argument is therefore the followin
Let OL8,U8,M8

81 andÔL8,U8,M8
81 be the families of profiles ob-

tained by the above procedure for two different strip config
rations~4.5!. Then the preceding argument shows that th
exists ac.0 such that

s8POL8,U8,M8
81 ,v8PÔL8,U8,M8

81 ⇒urL8
8 ~s8!2rL8

8 ~v8!u>c
~4.8!

for all large enoughU8.L8 for M 8.U8 sufficiently large.
This proves that a violation of Eq.~3.10! is obtained when
the profile insideU8 is close to the ‘‘all-0’’ configuration.
The fact that we have introduced another setM 8 is a conces-
sion to mathematical rigor: In this way the violation involve
opensets of configurations and this ensures that the phen
enon isessentialin probabilistic terms, that is, it cannot b
avoided by redefining probability weights in sets of meas
zero~open sets have nonzero renormalized measure bec
so do the initial measures, and smooth momentum trans
mation are continuous!.

We see that the argument is insensitive to the presenc
a magnetic field~because the constrained system is asked
have small magnetization!, thus we are proving non
Gibbsianness for low temperatures butarbitrary magnetic
field.

V. COMMENTS AND CONCLUSIONS

The present example of non-Gibbsianness as a co
quence of momentum-space transformations confirms
suspicion of Griffiths@12# that ‘‘no peculiarities of this sort
have been found . . . ,which may merely reflect the fact tha
no one has looked for them!’’ Nevertheless, one should
draw too radical conclusions from this occurrence. On
practical side, the main implication of non-Gibbsianness
that one has to be very careful in designing renormalizat
group transformations. This is in complete agreement w
what the founders and various practitioners
renormalization-group methods have been saying all alo

Indeed, already Wilson and Kogut in their classic revie
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emphasized ‘‘Otherwise,@that is, nonperturbatively#, the lo-
cality of @the renormalized interactions# is a nontrivial prob-
lem, which will not be discussed further’’@@14#, p. 145#. And
more explicitly, Fisher in his ‘‘Renormalization Group De
siderata’’ listed the conditions needed for a successful re
malization scheme in Hamiltonian space: ‘‘A renormaliz
tion group for a space of Hamiltonians should satisfy
following: ~A! Existencein the thermodynamic limit, . . . ,
~C! Spatial locality, . . . , oneshould be able to identify the
same regions of space and associated local variables b
and after the transformation’’@@1#, Section 5.4.2#.

Our example adds to the numerous instances showing
perversely or sloppily designed transformations can l
people into trouble. As Goldenfeld points out in his bo
Lectures on Phase Transitions and the Renormaliza
Group @@3#, p. 268#, ‘‘It is dangerous to proceed withou
thinking about the physics.’’ The moral is, then, that ren
malization transformations must be carefully crafted a
case-tailored. Already Wilson, as quoted in@@23#, p. 492#,
warned ‘‘One cannot write a renormalization cookbook.’’

On the foundational side, examples like the present
confirm the view expressed by Benfatto and Gallavotti@2# in
the opening sentence of their bookRenormalisation Group,
‘‘The notion of Renormalisation Group is not well-defined
It is clear that the mathematical formalization of the meth
requires much more than a naive approach in terms
Hamiltonians and flows of coupling constants. In fact, t
example of this paper illustrates some features pointing
promising directions for a better mathematical understand
of the renormalization-group framework.

First, our problematic profiles were configurations w
small magnetization. At low temperatures, this correspo
to a large fluctuation from the typical behavior, in which t
magnetization in a region of widthL is either positive or
negative of orderO(Ld). Renormalized effective interaction
are known not to be adequate to describe such large valu
the fluctuation field@20#; geometric expansions are muc
more suitable. This suggests to combine renormalizat
group ideas with this type of expansion—cluster or polym
expansion—to circumvent the ill-definedness of the ren
malized Hamiltonian. These expansions have indeed b
successfully applied in the rigorous control
renormalization-group transformations of unbounded-s
systems @@19,20#, and references therein#. A related ap-
proach, for bounded-spin systems, resorted to the renor
ization of Peierls-like contours@24#.

This observation supports the idea that spin variables m
be the ‘‘wrong’’ variables and that the appropriate variab
in the presence of first-order transitions are nonlocal v
ables such as contours. It should be pointed out, howe
that the use of contours requires the consideration of dif
ent ~contour! ensembles for separate phases. This would
against the usual renormalization-group description base
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flows of parameters in spaces where the various parts of
phase diagram can be connected, at least in a neighbor
of the critical point. In this regard, the approach based
low-temperature contour variables provides at best a pa
answer to the problem of rigorously justifyin
renormalization-group calculations.

The second feature of our example is that the violation
continuity was detected for a renormalized configuration t
is rather atypical~for instance, it will never be generated i
any reasonable numerical simulation scheme!. This seems to
be a systematic feature of most examples, and prompted
brushin to propose the study of these measures with te
niques borrowed from the treatment of other known syste
where it is necessary to exclude sets of ‘‘bad’’ configu
tions, namely unbounded spin systems and systems exh
ing Griffiths singularities. This has given rise to a healt
body of work@25–34#. As an upshot, a more general theo
involving a wider class of allowable Hamiltonians has be
proposed. This theory leads to the notion of ‘‘weak Gib
sianness’’ which seems a promising framework for a unifi
treatment. See, for instance,@35# for a review of results in
this and related directions.

We think our result illustrates and clarifies to some ext
the reason why finding a good renormalization-group sche
is such a nontrivial task, not only for strictly local but als
for only approximately local transformations. We produc
an example in the low-temperature regime, but the fact t
the mechanisms of non-Gibbsianness are so similar for r
space and momentum-space transformations leads us t
conjecture that, as in real space, also in momentum-sp
one cannot trust that in general the critical region is free
problems.
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